EXACT: How to Train Your Accuracy

Abstract

Classification tasks are usually evaluated in terms of accuracy. However, accuracy is discontinuous and cannot be directly optimized using gradient ascent. Popular methods minimize cross-entropy, Hinge loss, or other surrogate losses, which can lead to suboptimal results. In this paper, we propose a new optimization framework by introducing stochasticity to a model’s output and optimizing expected accuracy, i.e. accuracy of the stochastic model. Extensive experiments on image classification show that the proposed optimization method is a powerful alternative to widely used classification losses.

comments powered by Disqus

Related